
ROOT on Homebrew, 
pip plans

Henry Schreiner 
May 10, 2022

Topics

Homebrew
Introduction to brew

ROOT package use

Developing and maintaining

pip plans
Introduction to packaging

Advanced packaging

Plans with Scikit-build

Homebrewhttps://brew.sh

Package manager for macOS & Linux

Simple Ruby eDSL for package recipes

Binaries for 3 Intel macOS, 2 AS, and Linux

Single prefix (linux user installable)

Latest only philosophy

Cask support (pre-built binaries)

Special cases can be manually added with <pkg>@<version>

Can build from source or install from --head

Using brew
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Only requires git and Ruby (actually, bootstraps it’s own Ruby these days)

brew install <package>

brew update

brew cleanup

brew search <expr>

brew info <package>

brew bump-formula-pr --url https://root.cern.ch/download/root_v6.26.02.source.tar.gz --version 6.26.02 root

Install a package

Update all packages

Remove cached files

Look for a package

See dependencies, etc.

Brew bundles

https://iscinumpy.dev/post/setup-a-new-mac/

Brewfile

brew "python" # The (almost) latest Python

brew "root" # High Energy Physics toolkit

brew bundle

tap "homebrew/bundle" # First line of a bundle

tap "homebrew/cask" # Not needed on command line

tap "homebrew/cask-fonts" # Just needed for font casks below

tap "homebrew/core" # Not needed on command line

Building tools

brew "boost" # C++ library

brew "ccache" # Faster builds by caching

brew "cmake" # Build software projects

brew "ninja" # Replacement for make

brew "doxygen" # Doxygen generates C++ documentation

brew "pre-commit" # Allows pre-commit hooks to be installed and managed

brew "tbb" # Threaded building blocks from Intel

brew "swig" # Software wrapper interface generator

brew "qt" # The Qt Toolkit

General utilities

brew "colordiff" # More colorful diffs outside of git

brew "coreutils" # Basic stuff with a g prefix

brew "gnu-sed" # Adds the gsed command, more powerful than BSD sed

brew "gnu-time" # Nicer timing

brew "openssl" # Security stuff

brew "git" # The latest version of git instead of Apple's older one

brew "git-gui" # A quicker way to apply partial changes

brew "htop" # htop is better than top for checking processes

brew "tree" # tree is nice for looking at directories

brew "wget" # Mac's have curl by default, but not wget

brew "bash" # Bash 5 instead of 3, in case you need it

brew "rename" # Rename files utility

brew "clang-format" # Format C++ files

brew "tmux" # Split windows and saving terminal sessions (screen replacement)

brew "gh" # GitHub's command line interface, from gh's tap

brew "bat" # Nicely colorized replacement for cat

Personal customization options

brew "fish" # My favorite shell. Might move to zsh when macOS does, though

brew "lmod" # See my posts on lmod

brew "macvim" # VI for macOS, with mvim graphical interface too

brew "interactive-rebase-tool" # Run git config --global sequence.editor interactive-rebase-tool

brew "bash-completion" # Nicer completion for bash if you use it

Programming languages

brew "python" # Python 3.8

brew "numpy" # Now is Python3 only (numpy@1.16 is for python@2)

brew "go" # Used by hugo, can be useful to have

brew "node" # Javascript (for gitbooks, etc)

brew "yarn" # Package manager for node.js

brew "ruby" # Just to be extra sure the system Ruby never gets modified

brew "rbenv" # Use this for Ruby (pyenv also exists)

brew "rust" # Was trying out mdbook

brew "lua" # Lightweight language like Python

brew "java" # Meh. What can I say?

Python programs

brew "pipx" # Better way to add PyPI applications

brew "pipenv" # All-in-one environment tool

brew "nox" # Tool for standard development environments

brew "tox" # Old tool for standard development environments

brew "poetry" # Nice all-in-one packaging tool

brew "jupyterlab" # Programming environment

brew "black" # Python formatting

brew "mypy" # Python type checking

brew "cookiecutter" # Quickly start new projects

Packages

brew "hugo" # Fast website generator

brew "pandoc" # Convert between document formats

brew "pdftk-java" # PDF Tool Kit (Java port)

brew "qt" # The #1 graphics library for C++ and Python

brew "root" # High Energy Physics toolkit

brew "libsodium" # Have no idea why I needed this

Fonts

cask "font-hack-nerd-font"

cask "font-sauce-code-pro-nerd-font"

Core

cask "iterm2" # A great terminal

cask "mactex" # LaTeX. Huge.

cask "miniconda" # Nice way to get a system Conda install

cask "java" # The programming language vm

Programs

cask "google-chrome"# Since once and a while a site doesn't work with Safari

cask "gimp" # Photo editor

cask "blender" # The 3D application

cask "inkscape" # 2D vector drawings

Editors

cask "macdown" # Nice Markdown

cask "texstudio" # Nice IDE for LaTeX

cask "meld" # Compare files graphically.

cask "tikzit" # Fast drawings

cask "visual-studio-code"

Daemons

cask "docker" # Allows running and building docker images

cask "dropbox" # The cloud

cask "synergy" # Share a mouse and keyboard between computers. Free option is okay.

cask "amethyst" # Simulate a non-overlapping window manager with keyboard shortcuts

cask "xquartz" # Legacy Linux apps may need this

Chat

cask "mattermost"

cask "skype"

cask "slack"

cask "element"

My actual Brewfile ->

Single file for setting up a new Mac!

Brew link
Installed to /usr/local/opt/root (Intel macOS):

brew --prefix root

Link: make symlinks to /usr/opt (Intel)
brew link root

Unlink: remove symlinks
brew unlink root

No need for thisroot scripts!

Formula
class Wget < Formula

 homepage "https://www.gnu.org/software/wget/"

 url "https://ftp.gnu.org/gnu/wget/wget-1.15.tar.gz"

 sha256 "52126be8cf1bddd7536886e74c053ad7d0ed2aa89b4b630f76785bac21695fcd"

 depends_on "pkg-config" => :build

 depends_on "libidn2"

 depends_on "openssl@1.1"

 on_linux do

 depends_on "util-linux"

 end

 def install

 system "./configure", "--prefix=#{prefix}"

 system "make", "install"

 end

 test do

 system bin/"wget", "-O", "/dev/null", "https://google.com"

 end

end

Very elegant, powerful Ruby eDSL

Lots of options and access to important details

Binaries injected by CI

Everything in git

Instant formula edits:

brew edit wget

brew install --build-from-source

brew info root
root: stable 6.26.02 (bottled), HEAD

Object oriented framework for large scale data analysis

https://root.cern.ch/

/usr/local/Cellar/root/6.26.02_1 (6,416 files, 537.2MB) *

 Poured from bottle on 2022-04-27 at 23:23:42

From: https://github.com/Homebrew/homebrew-core/blob/HEAD/Formula/root.rb

License: LGPL-2.1-or-later

==> Dependencies

Build: cmake ✔, ninja ✔

Required: cfitsio ✔, davix ✔, fftw ✔, gcc ✔, gl2ps ✔, glew ✔, graphviz ✔, gsl ✔, lz4 ✔, mysql-client ✔, numpy ✔, openblas ✔, openssl@1.1 ✔, pcre ✔,
python@3.9 ✔, sqlite ✔, tbb ✔, xrootd ✔, xz ✔, zstd ✔

==> Requirements

Required: Xcode ✔

==> Options

--HEAD

	 Install HEAD version

==> Caveats

As of ROOT 6.22, you should not need the thisroot scripts; but if you

depend on the custom variables set by them, you can still run them:

For bash users:

 . /usr/local/bin/thisroot.sh

For zsh users:

 pushd /usr/local >/dev/null; . bin/thisroot.sh; popd >/dev/null

For csh/tcsh users:

 source /usr/local/bin/thisroot.csh

For fish users:

 . /usr/local/bin/thisroot.fish

Emacs Lisp files have been installed to:

 /usr/local/share/emacs/site-lisp/root

==> Analytics

install: 1,609 (30 days), 4,524 (90 days), 15,670 (365 days)

install-on-request: 1,594 (30 days), 4,485 (90 days), 15,535 (365 days)

build-error: 6 (30 days)

Specifics
Currently using Python 3.9
(Still the “python” formula)

Currently using built-in LLVM
(Build requires long-timeout label)

Can’t use the default GCC 5 on Linux
(Internal brew GCC fine)

C++17 mode
(Used to depend on macOS version)

 inreplace "cmake/modules/SearchInstalledSoftware.cmake" do |s|

 # Enforce secure downloads of vendored dependencies. These are

 # checksummed in the cmake file with sha256.

 s.gsub! "http://lcgpackages", "https://lcgpackages"

 # Patch out check that skips using brewed glew.

 s.gsub! "CMAKE_VERSION VERSION_GREATER 3.15", "CMAKE_VERSION VERSION_GREATER 99.99"

 end

This is all the patching done! Vanilla ROOT otherwise

Bottles for all supported platforms

 bottle do

 sha256 arm64_monterey: "4f5223ee441865d869a1b935d31a22c85f8f9aac869d69eba7d9109aaebbee3b"

 sha256 arm64_big_sur: "980a8bdec3fd26a6912066935634bb5826dbfeaee72cdfb8f3d921531aeba61e"

 sha256 monterey: "aab0d84528e3ecd8441ad4bacd54f60d7183a9153f3273f5fa46877924369a15"

 sha256 big_sur: "3d79db03d061064ba67b06dc2b79d8c823d517d656e1c94793c17bcfecc9c97e"

 sha256 catalina: "bad4b634d1adb2287765b5bd1c097888277b84415a4efcab20d1e2385ffeb8f5"

 sha256 x86_64_linux: "054d674fcbd968b84a21c88c229e666553f319882ea20ea6864a80ceeb431326"

 end

Python: how to use in venv

Like most distributions of ROOT, this does not play well with virtualenvs!

Solution: use --system-site-packages

Demo (from scratch in Docker)
docker run --rm -it ubuntu

apt update && apt install -y curl git build-essential

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

echo 'eval "$(/home/linuxbrew/.linuxbrew/bin/brew shellenv)"' >> /root/.profile

eval "$(/home/linuxbrew/.linuxbrew/bin/brew shellenv)"

brew install root
root

 --

 | Welcome to ROOT 6.26/02 https://root.cern |

 | (c) 1995-2021, The ROOT Team; conception: R. Brun, F. Rademakers |

 | Built for linuxx8664gcc on Apr 12 2022, 16:28:03 |

 | From tags/v6-26-02@v6-26-02 |

 | With g++-11 (Homebrew GCC 11.3.0) 11.3.0 |

 | Try '.help', '.demo', '.license', '.credits', '.quit'/'.q' |

 --

root [0]

Future ideas

Dual Python build (3.9 & 3.10)? (easy transition)

Use llvm@13 directly next release? (current version requires patches)

Intro to Python Packaging

https://xkcd.com/1987

How do I install a package?
sudo pip install <package>

pip install <package>

pip install --user <package>

Terrible - no explanation needed

Bad - installs to your global system or reverts to --user

Bad - installs to a “global” user directory

tensorflow -> typing_extensions >=3.7,<4
black -> typing_extensions >=4 Unsolvable environment!

Updating existing packages is much harder than a fresh solve

A new user can’t be sure of a solve if things change

These will never really be used
together! Black is an app!

Solution: virtual environments

📂 project
 📂 .venv
 📂 bin
 🐍 python
 📄 activate
 📁 lib
 …

python -m venv .venv

. .venv/bin/activate

work here

deactivate

Or use virtualenv,
faster!

Conda version: avoid the base environment

Aside: “app” solution: pipx

Creates an internal venv, exports just the entrypoint
pipx install mypy

Only executables available!

Creates a temporary venv, refresh after 1 week
pipx run mypy

No worries about what is installed or updating!

Try pipx run uproot-browser browse <rootfile>

Beyond virtualenv’s

pip-tools: pip-compile
Full environment locking with hashes

Poetry, PDM:
Single environment solution

Hatch:
Multi environment solution

pdm install

pdm update

Restores exact locked environment

Updates using the original requirements

Perfect for deploying a website…
Or a reproducible analysis!

How to make ROOT work?

We need pip install root!

How far are we from that? What would it take?

ROOT uses CMake…

Wouldn’t it be nice if we could use CMake in Python?

Scikit-build
Started in 2014 as PyCMake, developed by KitWare

Two new maintainers recently joined!

Packages:
scikit-build • cmake • ninja • moderncmakedomain

Current design:
Wrapper around setuptools for CMake

Plans waiting on funding:
https://iscinumpy.dev/post/scikit-build-proposal

ROOT was one of the partner projects!

https://iscinumpy.dev/post/scikit-build-proposal

Proposal outline
Stage 1: rework scikit-build

Stage 3: extensive docs work and tutorial workshops

Stage 2: help partner projects adapt/update scikit-build
ROOT was one of 10+ partner projects!
New scikit-build example on numpy.org

Develop scikit-build-core
PEP 517 builder, setuptools/distutils free

Compatibility layer for scikit-build
Limited public API helps

Proper setuptools extension
And Hatch, Poetry, etc.

Generalize, perhaps?

PEP 621 direct build
Best for many cases?

Add extension discovery mechanism
Easy integration with pybind11, other Python packages!

Possible support in CMake itself

pyproject.toml 
requires = ["pybind11", …] 
 
CMakeLists.txt 
find_package(pybind11 CONFIG REQUIRED)

http://numpy.org

Active space!
Setuptools is no longer the only way to package!

(PEP 517, 518, 621, 660)

Interest growing in binary builds & plugins!
(See Packaging Summit at PyConUS 2022)

clang-format-wheel
Scikit-Build

Runs LLVM’s CMake build
cibuildwheel

Builds python-independent binary wheels
1-2 MB binaries on PyPI

No “binding”, only entrypoint!

- repo: https://github.com/pre-commit/mirrors-clang-format

 rev: "v14.0.1"

 hooks:

 - id: clang-format

 types_or: [c++, c, cuda]

pipx run clang-format

Use with pre-commit, even on pre-commit.ci!

Also see give-me-python!

Experimental ROOT test
Added scikit-build setup.py, set a few options

Basic pyproject.toml
Hacky empty package folder to make setuptools happy

python -m pip install . -v

pipx run build --sdist --wheel

Correctly runs CMake build!
“root” command works!

Library in wrong place, but manually importable!

Tons of random files included
Structure incorrect for Python package

Lots of “global” (data) files

✔︎ ❌

166MB SDist

222MB wheel

Further reading

https://iscinumpy.dev

My PyCon US 2022 talk & packaging summit

This work was partially supported by the National Science Foundation under Cooperative Agreement OAC-1836650.

https://iscinumpy.dev

My Projects

Plumbum • POVM • PyTest GHA annotate-failures

https://iscinumpy.dev https://scikit-hep.org
https://iris-hep.org

C++ & Python

Building Python Packages

Scikit-HEP: Other

Other C++

Scikit-HEP: Histograms

pybind11 (python_example, cmake_example, scikit_build_example) • Conda-Forge ROOT

cibuildwheel • build • scikit-build (cmake, ninja, sample-projects) • Scikit-HEP/cookie

boost-histogram • Hist • UHI • uproot-browser

Vector • Particle • DecayLanguage • repo-review

Other Python

Jekyll-Indico
Other Ruby

 CLI11 • GooFit

Modern CMake • CMake Workshop
Computational Physics Class
Python CPU, GPU, Compiled minicourses
Level Up Your Python

My books and workshops

 henryiii
 henryschreiner3

https://plumbum.readthedocs.io/en/latest
https://github.com/Princeton-Penn-Vents/princeton-penn-flowmeter
https://github.com/utgwkk/pytest-github-actions-annotate-failures
https://iscinumpy.dev
https://scikit-hep.org
https://iris-hep.org
https://pybind11.readthedocs.io/
https://github.com/pybind/python_example
https://github.com/pybind/cmake_example
https://github.com/pybind/scikit_build_example
https://github.com/conda-forge/root-feedstock
https://cibuildwheel.readthedocs.io/
https://pypa-build.readthedocs.io/
https://github.com/scikit-build/scikit-build
gvhttps://github.com/scikit-build/cmake-python-distributions
https://github.com/scikit-build/ninja-python-distributions
https://github.com/scikit-build/scikit-build-sample-projects
https://github.com/scikit-hep/cookie
https://github.com/scikit-hep/boost-histogram
https://github.com/scikit-hep/hist
https://github.com/scikit-hep/uhi
https://github.com/scikit-hep/uproot-browser
https://github.com/scikit-hep/vector
https://github.com/scikit-hep/particle
https://github.com/scikit-hep/decaylanguage
https://github.com/henryiii/scikit-hep-repo-review
https://github.com/iris-hep/jekyll-indico
https://github.com/CLIUtils/CLI11
https://github.com/GooFit/GooFit
https://cliutils.gitlab.io/modern-cmake/
https://hsf-training.github.io/hsf-training-cmake-webpage/
https://henryiii.github.io/compclass
https://github.com/henryiii/python-performance-minicourse
https://github.com/henryiii/pygpu-minicourse
https://github.com/henryiii/python-compiled-minicourse
https://henryiii.github.io/level-up-your-python

